

Computing Grade 7

(Instructional Resource)

UNIT/STRAND

TOPIC

Sub Topics

Session

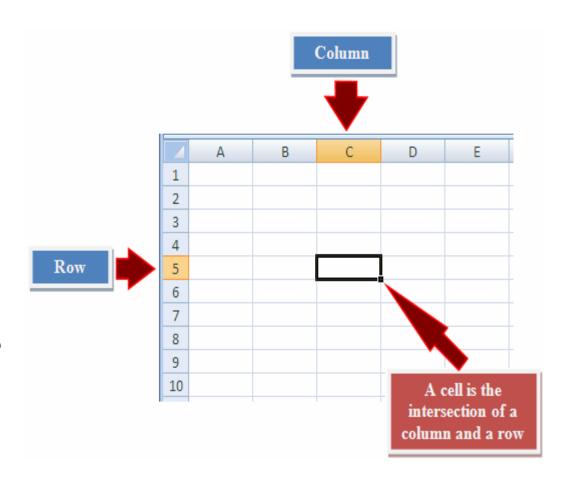
Prepared By

2: Managing Data

Spreadsheets

Spreadsheets

2025-26


(Sahibzadi Annum)

Managing Data/Spreadsheets

Spreadsheets

- A spreadsheet is a tool used for organizing, analyzing, and storing data in a table format.
- It is made of rows, columns, and cells.
 - ☐ Rows (horizontal)
 - ☐ Columns (vertical)
 - ☐ Cells (where a row and column meet)
- The cell you are working in is called the active cell (usually has a dark border)

Managing Data/Spreadsheets

Spreadsheets

- A spreadsheet is a computer file used to:
 - Make calculations
 - Create databases
 - Analyze data (understand what it means)
 - Model solutions to problems
- It helps organize and work with large sets of data.

Computing Grade 7

(Instructional Resource)

UNIT/STRAND

TOPIC

Sub Topics

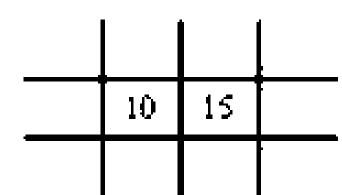
Session

Prepared By

2: Managing Data

Spreadsheets

Conditional Formatting


2025-26

(Sahibzadi Annum)

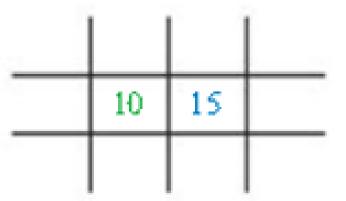
Conditional formatting

- Conditional formatting is used to change how data looks in a spreadsheet.
- It helps you highlight important data by changing text or cell color.
- A condition is a rule like:
 "Is the value greater than 10?"

• Example of Conditional Formatting:

We can create **rules** like:

- ☐ If the number is greater than 10, the text turns blue.
- ☐ If the number is less than or equal to 10, the text turns green.


Conditional Formatting

Why Use It?

- It helps us see patterns in our data.
- •It makes it easier to find important numbers.
- Helps see business performance quickly
- Makes spreadsheets easier to understand

"If the value is less than or equal to 10, the text turns green."

How to Make a Rule

A rule includes:

- \square A **condition** (like value = 0)
- ☐ The **format** you want to apply (like change background to orange)

Example:

"If the value is 0, make the background color orange."

Conditional Formatting

What is a Statement?

A statement is a sentence that follows a rule.

Example:

"If the value is 0, change the cell color to orange."

This sentence is a statement because it applies a rule to data.

Conditional Formatting in Real Life

- Conditional formatting can help show:
 - □ Green color → when the business has money
 - □ Red color → when the business is in debt
- Green = profit, Red = debt
- It helps the user see if the business is doing well or not at a glance.

Conditional Formatting

Example – Business Has Money

- The total in the bank account is **positive**
- Total is **green** because the business has money.

Month	Income	Costs	Balance
April	\$2,560.00	\$580.00	\$1,980.00
May	\$3,800.00	\$1,050.00	\$2,750.00
June	\$1,850.00	\$800.00	\$1,050.00
July	\$2,500.00	\$1,000.00	\$1,500.00
August	\$2,180.00	\$850.00	\$1,330.00
September	\$1,440.00	\$715.00	\$725.00
Total in bank account			\$6,385.00

Conditional Formatting

Example – Business Is in Debt

- The total in the bank account is negative
- The cell is red because the business is in debt (it has no money left)

Month	Income	Costs	Balance
April	\$340.00	\$560.00	-\$220.00
May	\$390.00	\$850.00	-\$460.00
June	\$500.00	\$730.00	-\$230.00
July	\$600.00	\$690.00	-\$90.00
August	\$850.00	\$900.00	-\$50.00
September	\$720.00	\$715.00	\$5.00
Total in bank a	ccount		\$40.00

Practical Task 2.1

Practical Task 2.1 CB(Pg 151-154)

Practical Task 2.2

Practical Task 2.2 CB(Pg 154-155)

Practical Task 2.3

Practical Task 2.3 CB(Pg 156)

Computing Grade 7

(Instructional Resource)

UNIT/STRAND

TOPIC

Sub Topics

Session

Prepared By

Managing Data

Modelling

Modelling real life systems & scenarios

2025-26

(Sahibzadi Annum)

Managing Data/Modelling real life system and scenarios

Modelling real life system and scenarios

What is a Model?

- A model helps us understand a problem and plan solutions.
- It is often used to represent a **real-life situation** (e.g., school drama society accounts).

What is a Spreadsheet Model?

- A spreadsheet model is a model created in a spreadsheet (like Excel).
- It helps in organizing data and making calculations to see the outcome.

Spreadsheet Models Include:

- Data Actual values entered (e.g., ticket sales, costs).
- Labels Text that explains the data (e.g., "Total sales").
- Calculations Formulas that work out totals or balances.

Label I		
Item	Cost	
Mediterranean	\$3,050	
Meals	\$975	← Data
Hotel	\$2,000	
Total	\$6,025	
	Calculation	on

Managing Data/Modelling real life system and scenarios

Modelling real life system and scenarios

Example

Youth Drama Society Spreadsheet Model

- Yellow cells = Labels → These are the titles or names that explain what the data means.
- Blue cells = Data → These are the actual numbers entered into the spreadsheet.
- Purple cells = Calculations → These are totals or values worked out using formulas.

Income	
Ticket sales	\$2,050.00
Merchandise sales	\$350.00
Refreshment sales	\$470.00
Total sales	\$2,870.00

Sales target	\$2,900.00
--------------	------------

Costs	
Building hire	\$800.00
Lighting hire	\$200.00
Costume hire	\$260.00
Merchandise costs	\$150.00
Refreshment costs	\$230.00
Total costs	\$1,640.00

Total costs allowed \$1,700.00

Balance	\$1,230.00
---------	------------

Managing Data/Modelling real life system and scenarios

Practical Task 2.4

Practical Task 2.4 CB(Pg 162-164)

Computing Grade 7

(Instructional Resource)

UNIT/STRAND

TOPIC

Sub Topics

Session

Prepared By

Managing Data

Modelling

Spreadsheet calculations

2025-26

(Sahibzadi Annum)

Managing Data/Spreadsheet calculations

Spreadsheet calculations

What Are Spreadsheet Calculations?

- We can use spreadsheets to **do calculations** just like a calculator.
- To do this, we use something called a formula.
- A formula tells the computer what to calculate.
- All formulas start with = (equals sign).

What Are Formulas?

- Formulas are like math equations:
 - ☐ Use symbols like + (add), (subtract), * (multiply))
 - ☐ Can use **numbers** or **cell references** (like A4 or D4)
- Example:
 - \square =E4+6 adds the number in cell E4 to 6.
 - \Box =E4*8 multiplies the value in E4 by 8

Formula	What it does
=E4+6	Adds numbers or cells
=120-B4	Subtracts one value from another
=E4*8	Multiplies one value by another
=B4/12	Divides one value by another

Managing Data/Spreadsheet calculations

Spreadsheet calculations

What Are Functions?

- Functions are special built-in tools in spreadsheets.
- They help you do big jobs easily.
- Instead of typing a long formula, just use a function name.
- Example:

Function	What it does
=SUM(E4:E8)	Adds all the values in cells E4 to E8
=COUNT(E4:E8)	Counts how many numbers are in cells E4 to E8

- After typing your formula, press Enter.
- The result will show in the cell.
- You can double-click the cell to see or edit the formula

Computing Grade 7

(Instructional Resource)

UNIT/STRAND

TOPIC

Sub Topics

Session

Prepared By

Managing Data

DATABASES

What is a Primary key?

2025-26

(Sahibzadi Annum)

What is Primary key?

What is a Database?

- A database is a collection of related data.
- Data is stored in a table made of rows and columns.
- Example: A list of games with their age rating and genre.

Understanding Fields and Records

- **Field** = A column in the table
- Record = A row in the table

Game Name	Age rating (Age+)	Genre	
Bill & Betty	12	2D plat form	
Build Blocks	3	arcade	← Reco
Ping Pong	3	arcade	
Puzzle Place	8	puzzle	
Super Adventurer	12	2D plat form	
Blocks Super Build	3	puzzle	
The Great Race	3	racing	
Work It Out	8	puzzle	

What is Primary key?

What is Primary key?

- A Primary Key is something that makes a record unique.
- It helps the database identify each row separately.
- Example: Game Name can be used as a Primary Key if it is unique.

Why is Uniqueness Important?

- If two records are exactly the same, the database gets confused.
- Every record must be different in at least one field.
- That's why we use a **Primary Key** something no two records share.

Example Problem

Let's look at Database:

- Two players are called Mohammed Khan.
- Both like the game Bill & Betty.
- These two records look exactly the same.
- So, this database does not have a unique record.

Player	Game Name	Age rating	Genre
Mohammed Khan	Bill & Betty	12+	2D plat form
Charlie Jones	Build Blocks	3+	arcade
Anisa Nababan	Ping Pong	3+	arcade
Mohammed Khan	Bill & Betty	12+	2D plat form
Carla Estevez	Ping Pong	3+	arcade

What is Primary key?

How Do We Fix It?

- We add a new field with a unique value for each record.
- Example: A unique **Player ID** like 1, 2, 3...
- This new field becomes the Primary Key

Player number	Player Name	Game Name	Age rating	Genre
1	Mohammed Khan	Bill & Betty	12+	2D plat form
2	Charlie Jones	Build Blocks	3+	arcade
3	Anisa Nababan	Ping Pong	3+	arcade
4	MohammedKhan	Bill & Betty	12+	2D plat form
5	Carla Estevez	Ping Pong	3+	arcade

Practical Task 2.5

Practical Task 2.5 CB(Pg 180-181)

Computing Grade 7

(Instructional Resource)

UNIT/STRAND

TOPIC

Sub Topics

Session

Prepared By

Managing Data

DATABASES

Creating a query

2025-26

(Sahibzadi Annum)

Creating a query

What is a Query?

- •A query is a search for data that meets specific conditions.
- •It helps you quickly find information in a large database.
- •Example: Find all games that use a puzzle format.

Why Use Queries?

- •Databases can contain **hundreds or thousands** of records.
- •Queries help find specific data quickly and accurately.
- •Businesses use queries to:
 - Track sold products.
 - Analyze customer behavior.
- •You've already used phrase searches this is similar!

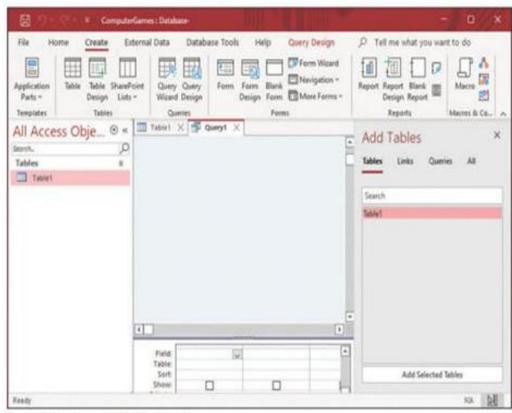
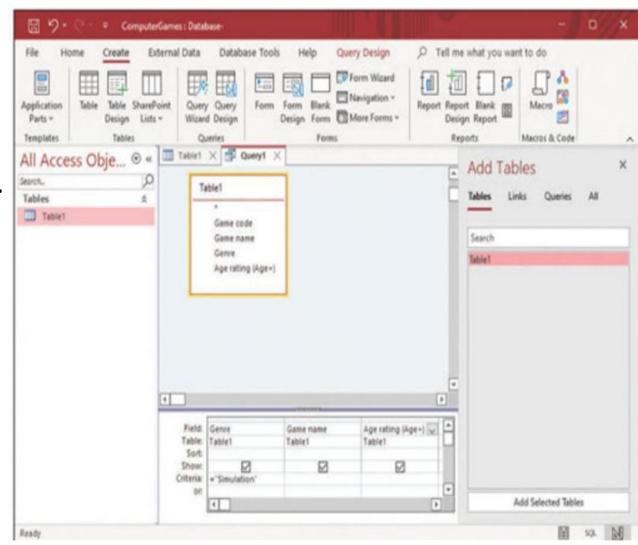


Figure 2.17: Query tab in 'Design View'

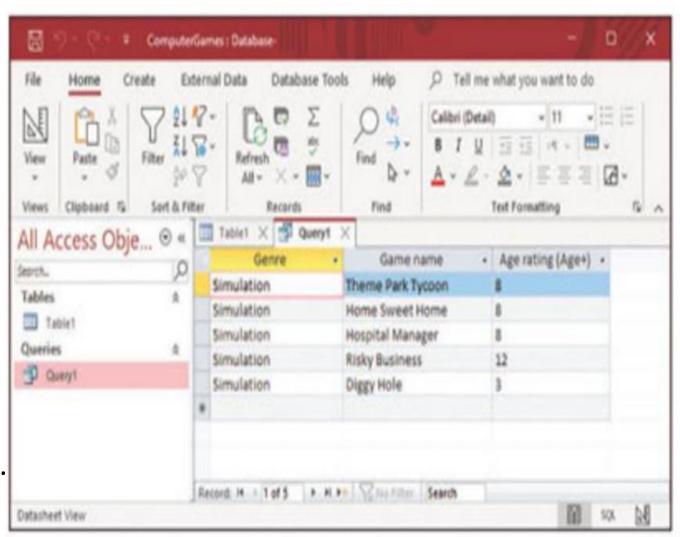

Creating a query

How to Create a Query (Steps)

- 1. Open Microsoft Access.
- 2.Click **Create** tab.
- 3. Select Query Design.
- 4.A new tab will open for designing your query.

Add Tables and Fields

- •In the right panel, double-click the table you need.
- •Select the fields you want:
 - Fields to search
 - Fields to show in the result
- •Fields appear in the bottom grid.


Creating a query

Add Search Criteria

- Enter conditions in the Criteria row.
 - Example: Genre = "Simulation"
- •Enclose text in double quotation marks.
- Tick the Show checkbox for visible results.

View Your Query Results

- Click View or Run to see results.
- •Choose between:
 - Datasheet View to see results as a table.
 - Design View to edit the query setup.

Creating a query

Summary

- •A query is used to find specific data.
- •Use Query Design in Access.
- •Always enter criteria clearly (e.g., in quotes).
- •Run your query to view filtered results.

Practical Task 2.6

Practical Task 2.6 CB(Pg 184-185)

Practical Task 2.7

Practical Task 2.7 CB(Pg 185)

Using < and > with letters

- •Learning how to use "less than" (<) and "greater than" (>) in database queries.
- •Understanding alphabetical order: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z.
- •Using > in a query will select letters nearer to the **end** of the alphabet (like X, Y, Z).
- •When searching with letters, always use double quotation marks:

Example: "A" < "D"

•Using < in a query will select letters nearer to the **start** of the alphabet (like A, B, C).

Example Database Table

Player Number	Player Name	Game Name	Age Rating	Genre
1	Mohammed Khan	Bill & Betty	12+	2D Platform
2	Charlie Jones	Build Blocks	3+	Arcade
3	Anisa Nababan	Ping Pong	3+	Arcade
4	Mohammed Khan	Bill & Betty	12+	2D Platform
5	Carla Estevez	Ping Pong	3+	Arcade

Using < and > with letters

Query Example

Query:

Player Name < "D"

Results: (All names starting before 'D' alphabetically)

Player Number	Player Name	Game Name	Age Rating	Genre
2	Charlie Jones	Build Blocks	3+	Arcade
3	Anisa Nababan	Ping Pong	3+	Arcade
5	Carla Estevez	Ping Pong	3+	Arcade

Explanation

- Names starting with:
 - •C (Charlie, Carla)
 - A (Anisa)

All come **before** D in the alphabet.

<u>Conclusion:</u> Using < and > helps sort and filter text fields alphabetically in a database

Practical Task 2.8

Practical Task 2.8 CB(Pg 187)

DATABASES / Managing Data/Creating a query

Practical Task 2.9

Practical Task 2.9 CB(Pg 188-189)