

Computing Grade 7

(Instructional Resource)

UNIT/STRAND

TOPIC

Sub Topics

Session

Prepared By

4: Computer Systems

Types of Software

Application/System software

2025-26

Qalbeen Khalid

Computer Systems - Types of software

Application Software

- Definition:
- Application software is a program or group of programs designed for end-users to perform specific tasks.
- The word app is short for application.
- 'Application' is another word we can use for a program or a piece of a software.
- Smartphones and tablet apps are application software.
- Examples:
- Writing documents
- Browsing the internet
- Editing photos
- Managing finances

A <u>software</u> is a set of instructions, data, or programs used to operate computers and perform specific tasks. It's the opposite of **hardware**, which refers to the physical components of a computer (like the keyboard, hard drive, or screen).

Computer Systems – Types of Software

Application Software

- Characteristics of Application Software
- User-oriented
- Easy to use
- Designed for specific purposes
- Can be standalone or web-based
- Examples of Application Software

•	<u>Software</u>

- MS Word
- Excel
- Adobe Photoshop
- Google Chrome
- Zoom

Purpose

Word processing

Data organization

Image editing

Web browsing

Video conferencing

Computer Systems – Types of s/w

System Software

- Definition:
- System software is a type of computer program designed to run a computer's hardware and application programs.
- Key Role:
- It acts as a bridge between hardware and user applications.

Functions of System Software

- Controls and manages hardware components
- Provides a platform for application software
- Manages system resources
- Facilitates user interaction with the machine

Computer Systems – Types of s/w

System Software

Types of System Software

- Operating System (OS)
- Manages hardware and software resources
- Examples: Windows, Linux, macOS
- Utility Programs
- Perform maintenance tasks
- Examples: Antivirus, Disk Cleanup, Backup tools

Computer Systems – Types of s/w

System Software

- VIDEO BASED ON OPERATING SYSTEM
- https://youtu.be/fkGCLIQx1MI?si=eSpqXqFDFqJkIWls
- After this the learners will perform unplugged activity 4.3 on book pg 245.

Computer Systems – Application vs. System Software

Difference between Application and System software

Application software	System software	
Allows the user to do specific task.	Enables the system to function. Provides right condition for the application software	
Not essential for system to run	essential for system to run	
Only runs when user asks	Usually runs when the device is active without any action from the user	
User is aware of it. Uses it directly	User is not aware of it. Runs in the background	
Interacts with the system software not the hardware	Interacts closely with the hardware.	

Computer Systems – Application vs. System Software

Difference between Application and System software

- Video clip of differences between types of software
- https://www.youtube.com/watch?v=-gVQgyU0Yk4&ab channel=samuellonzaga
- Video based on the types of the software and how they are connected with each other and the hardware.

https://www.youtube.com/watch?v=gxhxcvBuanU&ab channel=AvantikaNimje

- Learners will do Question 4.2 and 4.3 given on book pg 244-245 in the booklet.
- What are two examples of application software?
- What is the purpose of application software?
- What are the two examples of system software?
- What is the purpose of system software?

Denary number system

- Also called the <u>Decimal Number System</u>.
- Based on 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Base-10 number system
- Most commonly used system in everyday life
- First five place values of denary number system are given below:

1000*10=10,000	100*10=1000	10*10=100	1*10=10	1
----------------	-------------	-----------	---------	---

• First five place values of number system are given below:

27*3=81 9*3=	27 3*3=9	1*3=3	1
--------------	----------	-------	---

Then the instructor will explain the steps of conversion from base 10 to base 2 and how to proofread the answer with the help of a video clip given below:

https://www.youtube .com/watch?v=rsxT4F fRBaM&ab channel= TheOrganicChemistry Tutor

Denary number system DRILL QUESTIONS

Convert the following from base 10 to base 2

- **80**
- 150
- 220
- 48
- 148

DRILL QUESTIONS OF PLACE VALUES

- Find the first four place values of octal number systems base 8
- Find the first three place values of senary number system base 6

Denary number system BOOKLET WORK

- Convert the following numbers from base 10 to base 2
- 35
- 65
- 230
- 178
- 205
- 255
- 32
- 40

Binary number system

- Definition: A number system that uses only two digits: 0 and
 1
- Also called Base-2 system
- Used extensively in digital electronics and computing

- How Binary Numbers Work
- Each digit represents a power of 2
- Example Binary:
- $1011 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 8 + 0 + 2 + 1$
- = 11 in decimal

Binary number system

- Video based on conversion from base 2 to base 10:
- https://www.youtube.com/wat ch?v=M41M9ATm49M&ab_ch annel=LearnFree

- Conversion drill question from base 2 to base 10
- 1000111
- 01010111
- 11111000
- 1010110
- 00001100

Binary number system Booklet work

- <u>RECAP</u> Video based on conversion from base 2 to base 10:
- https://www.youtube.com/wat ch?v=2Z03p3yhGmk&ab chan nel=PotatoPirates

BOOKLET WORK

- Convert the following from base 2 to base 10
 - 1100110
 - 1111000
 - 0111110
 - 0101010
 - 0000001
 - 1011110
 - 0011111
 - 1111000

Computer Systems – Data Represenation – Binary System

ASCII CODE

- <u>ASCII</u> stands for: American Standard Code for Information Interchange
- It's a character encoding standard used for representing text in computers
- Each character is assigned a numerical value (in binary, decimal, or hexadecimal)
- Uses 7 bits to represent each character (values from 0 to 127)
- Commonly extended to 8 bits (0–255) in Extended ASCII
- Represents letters, digits, punctuation marks, control characters
- Video clip based on the concept of ASCII is given below:
- https://www.youtube.com/watch?v=5aJKKgSEUnY&ab_ch annel=TheTechTrain.

- ASCII in Action (Example)
- Text Hi
- ASCII Codes :
- $H \to 72 \to 1001000$
- $i \rightarrow 105 \rightarrow 1101001$
- Binary Representation of "Hi":
- 1001000 1101001

Computer Systems – Data Represenation – Binary System

Unicode

- Unicode: A universal character encoding standard
- Designed to support all characters in all languages and scripts
- Uses 1 to 4 bytes per character
- Supports over 143,000 characters
- ASCII and UNICODE difference table is given below:

VIDEO BASED ON UNICODE:

https://www.youtube.com/wa tch?v=pJC8gmKa4hA&ab chan nel=EE241S6D

Feature	ASCII	Unicode
Bit Size	7 bits	8, 16, or 32 bits
Characters	128	143,000+
Language Support	English only	All languages (global)
Emoji Support	X Not supported	⊘ Supported
Compatibility	Older systems	Modern systems/internet

Pixels

- A <u>pixel</u> (short for "picture element") is the smallest unit of a digital image or display.
- Each pixel holds color and brightness information.
- Millions of pixels form an image.
- Example: A screen with 1920×1080 has 2,073,600 pixels.
- Pixel video clip:
- https://www.youtube.com/watch?v=wsFROq2jVSQ&ab_channel=TechUpbeat

Resolution

- Resolution refers to the number of pixels in an image or display, usually given as width × height.
- Higher resolution = more detail and clarity.
- Example:
- $HD = 1280 \times 720$
- Full HD = 1920×1080
- $4K = 3840 \times 2160$
- Resolution video clip:
- https://www.youtube.com/watch?v=3kz2GAof9tI&ab_channel=AMD

Bitmaps

- A **bitmap** is a type of image file where the image is made up of a grid of individual pixels, each storing color values.
- Also called a raster image.
- Common bitmap formats: .bmp, .jpg, .png
- Bitmap video clip:
- https://www.youtube.com/watch?v=2mWc3YqlM7c&ab channel=JonathanMolson

Colored Images and bit-depth

- In colored (RGB) images:
 - Each pixel has **3 channels**: Red, Green, and Blue.
 - Bit depth is usually per channel.
- Bit depth refers to the number of bits used to represent the color of a single pixel.
- It determines how many colors an image can display.
- Video based on colored images:
- https://www.youtube.com/watch?v=V63LXT hQHk&ab channel=KshitijVivanInstitu teAhmedabad

Amplitude

- **Amplitude** is the height of a sound wave, representing its loudness.
- Higher amplitude = louder sound
- Measured in decibels (dB)
- Video of a sound wave:
- https://www.youtube.com/watch?v=TsQL-sXZOLc&ab channel=ScienceSauce

Frequency

- **Frequency** is the number of sound wave cycles per second.
- It determines the pitch of a sound.
- Measured in Hertz (Hz)
- High frequency = High pitch (e.g., whistle)
- Low frequency = Low pitch (e.g., drum)
- Video clip of frequency:
- https://www.youtube.com/watch?v=XLfQpv2ZRPU&ab_channel=MED-EL

Sample +Sampling Rate

- A <u>sample</u> is a snapshot of the amplitude of a sound wave at a specific point in time
- In digital audio, the sound wave is divided into many samples for storage and processing
- Sampling rate is the number of samples taken per second from a sound wave
- Measured in Hertz (Hz)
- Example: CD-quality audio = 44,100 samples/second (44.1 kHz)
- Higher sampling rate = better sound quality
- Video based on how MIC works:
- https://www.youtube.com/watch?v=vRmEeNNXSfk&ab_channel=HowItWorks%3F

Booklet work

- Question 4.6 (Book pg 261 will be done in the booklet)
 - 1. How do you think sample rate affects the size of digital sound file?
 - 2. Why do you think a low sample rate can be used for voice calls, but a much higher one is needed for music?

Automated systems in manufacturing

- Artificial Intelligence (AI) is the ability
 of machines to perform tasks that
 typically require human intelligence,
 such as decision-making, learning, and
 problem-solving.
- An automated system uses machines and control systems to perform tasks without continuous human intervention.
- Includes mechanical, electrical, and computerized systems.

- Real-World Examples:
- Smart factories with Al-driven robots
- Automated inspection systems
- Predictive analytics for machine maintenance
- Autonomous guided vehicles (AGVs) in warehouses

Automated systems in manufacturing

Automated systems in health

- <u>Automated systems in healthcare</u> use technology and machines to perform tasks with minimal human intervention, improving efficiency, accuracy, and safety.
- These systems can handle monitoring, diagnosis, treatment, and administrative tasks.
- Benefits of Automation in Healthcare:
- Faster diagnosis and treatment
- Improved accuracy and patient safety
- Reduces human workload
- Enables 24/7 patient monitoring
- Streamlines administrative tasks

Automated systems in health

- Real-World Examples:
- Al-powered Chabot for symptom checking
- Robotic surgery systems like the Da Vinci robot
- Wearable health monitors (e.g., heart rate, oxygen level tracking)
- Automated medication dispensers in hospitals

Al in image recognition

- Al in image recognition uses machine learning and deep learning algorithms to analyze and interpret images automatically.
- Real-World Applications
- Facial recognition (e.g., phone unlocking)
- Medical imaging (e.g., detecting tumors in X-rays)
- Self-driving cars (recognizing road signs and obstacles)

How It Works (Simplified Process):

Input: Image is fed to the system

Preprocessing: Image is resized, filtered

Feature Extraction: Key elements (edges,

shapes, colors) are detected

Classification: Al model identifies the

object (e.g., dog, car, face)

Booklet work

Al in computer games

 Al in computer games refers to the simulation of intelligent behavior in non-player characters (NPCs) or game systems to make the game more challenging, interactive, and realistic.

- Real-World Examples:
- Pac-Man ghosts follow smart chase patterns
- FIFA Al-controlled players act like real teammates
- Chess games Al learns and challenges players

Al in computer games

Activity 4.7 will be done in the lab.

Booklet work

Question 4.8 will be done in the booklet.

- 1. What is artificial intelligence?
- 2. What is an automated system?
- 3. What are two ways an automated system can be used in health?
- 4. How are automated systems are used in retail?